
On the Cruelty of Really Doing Formal Proofs

John Harrison
Intel Corporation

Principia Mathematica anniversary symposium

27th November 2010

0

Principia and its discontents

Principia Mathematica was the first sustained and successful actual
formalization of mathematics.

1

Principia and its discontents

Principia Mathematica was the first sustained and successful actual
formalization of mathematics.

• This practical formal mathematics was to forestall objections to
Russell and Whitehead’s ‘logicist’ thesis, not a goal in itself.

• Russell himself reported that his ‘intellect never recovered from
the strain’ of writing Principia Mathematica.

• Subsequently, the idea of actually formalizing proofs has not
been taken very seriously, and few mathematicians do it today.

2

Principia and its discontents

Principia Mathematica was the first sustained and successful actual
formalization of mathematics.

• This practical formal mathematics was to forestall objections to
Russell and Whitehead’s ‘logicist’ thesis, not a goal in itself.

• Russell himself reported that his ‘intellect never recovered from
the strain’ of writing Principia Mathematica.

• Subsequently, the idea of actually formalizing proofs has not
been taken very seriously, and few mathematicians do it today.

But thanks to the rise of the computer, the actual formalization of
mathematics is attracting more interest.

3

Logic and computers

The development of computers and programming owes many debts
to mathematical logic:

• The basic logic gates from which digital computers are designed
correspond to operations in propositional logic.

• Turing’s analysis of computation was untimately intended to
prove the undecidability of the first-order Entscheidungsproblem.

• Programming languages are themselves formal languages and
have been heavily influenced by formal logic (free and bound
variables etc.)

Computing can now start to pay back its debt.

4

The importance of computers for formal proof

Computers can both help with formal proof and give us new reasons
to be interested in it:

• Computers are expressly designed for performing formal
manipulations quickly and without error, so can be used to check
and partly generate formal proofs.

• Correctness questions in computer science (hardware,
programs, protocols etc.) generate a whole new array of difficult
mathematical and logical problems where formal proof can help.

Because of these dual connections, interest in formal proofs is
strongest among computer scientists, but some ‘mainstream’
mathematicians are becoming interested too.

5

Russell was an early fan of mechanized formal proof

Newell, Shaw and Simon in the 1950s developed a ‘Logic Theory
Machine’ program that could prove some of the theorems from
Principia Mathematica automatically. Russell wrote to Simon:

“I am delighted to know that Principia Mathematica can now
be done by machinery [...] I am quite willing to believe that
everything in deductive logic can be done by machinery. [...]
I wish Whitehead and I had known of this possibility before
we wasted 10 years doing it by hand.”

Newell and Simon’s paper on a more elegant proof of one result in
PM was rejected by JSL because it was co-authored by a machine.

6

Formalization in current mathematics

Traditionally, we understand formalization to have two components,
corresponding to Leibniz’s characteristica universalis and calculus
ratiocinator.

• Express statements of theorems in a formal language, typically
in terms of primitive notions such as sets.

• Write proofs using a fixed set of formal inference rules, whose
correct form can be checked algorithmically.

Correctness of a formal proof is an objective question, algorithmically
checkable in principle.

7

Mathematics is reduced to sets

The explication of mathematical concepts in terms of sets is now
quite widely accepted (see Bourbaki).

• A real number is a set of rational numbers . . .

• A Turing machine is a quintuple (Σ, A, . . .)

Statements in such terms are generally considered clearer and more
objective. (Consider pathological functions from real analysis . . .)

8

Symbolism is important

The use of symbolism in mathematics has been steadily increasing
over the centuries:

“[Symbols] have invariably been introduced to make things
easy. [. . .] by the aid of symbolism, we can make transitions
in reasoning almost mechanically by the eye, which
otherwise would call into play the higher faculties of the
brain. [. . .] Civilisation advances by extending the number of
important operations which can be performed without
thinking about them.” (Whitehead, An Introduction to
Mathematics)

9

Formalization is the key to rigour

Formalization now has a important conceptual role in principle:

“. . . the correctness of a mathematical text is verified by
comparing it, more or less explicitly, with the rules of a
formalized language.” (Bourbaki, Theory of Sets)

“A Mathematical proof is rigorous when it is (or could be)
written out in the first-order predicate language L(∈) as a
sequence of inferences from the axioms ZFC, each
inference made according to one of the stated rules.” (Mac
Lane, Mathematics: Form and Function)

What about in practice?

10

Mathematicians don’t use logical symbols

Variables were used in logic long before they appeared in
mathematics, but logical symbolism is rare in current mathematics.

Logical relationships are usually expressed in natural language, with
all its subtlety and ambiguity.

Logical symbols like ‘⇒’ and ‘∀’ are used ad hoc, mainly for their
abbreviatory effect.

“as far as the mathematical community is concerned George
Boole has lived in vain” (Dijkstra)

11

Mathematicians don’t do formal proofs . . .

The idea of actual formalization of mathematical proofs has not been
taken very seriously:

“this mechanical method of deducing some mathematical
theorems has no practical value because it is too
complicated in practice.” (Rasiowa and Sikorski, The
Mathematics of Metamathematics)

“[. . .] the tiniest proof at the beginning of the Theory of Sets
would already require several hundreds of signs for its
complete formalization. [. . .] formalized mathematics cannot
in practice be written down in full [. . .] We shall therefore
very quickly abandon formalized mathematics” (Bourbaki,
Theory of Sets)

12

. . . and the few people that do end up regretting it

“my intellect never quite recovered from the strain of writing
[Principia Mathematica]. I have been ever since definitely
less capable of dealing with difficult abstractions than I was
before.” (Russell, Autobiography)

However, now we have computers to check and even automatically
generate formal proofs.

Our goal is now not so much philosphical, but to achieve a real,
practical, useful increase in the precision and accuracy of
mathematical proofs.

13

Are proofs in doubt?

Mathematical proofs are subjected to peer review, but errors often
escape unnoticed.

“Professor Offord and I recently committed ourselves to an
odd mistake (Annals of Mathematics (2) 49, 923, 1.5). In
formulating a proof a plus sign got omitted, becoming in
effect a multiplication sign. The resulting false formula got
accepted as a basis for the ensuing fallacious argument. (In
defence, the final result was known to be true.)” (Littlewood,
Miscellany)

A book by Lecat gave 130 pages of errors made by major
mathematicians up to 1900.

A similar book today would no doubt fill many volumes.

14

Even elegant textbook proofs can be wrong

“The second edition gives us the opportunity to present this
new version of our book: It contains three additional
chapters, substantial revisions and new proofs in several
others, as well as minor amendments and improvements,
many of them based on the suggestions we received. It also
misses one of the old chapters, about the “problem of the
thirteen spheres,” whose proof turned out to need details
that we couldn’t complete in a way that would make it brief
and elegant.” (Aigner and Ziegler, Proofs from the Book)

15

Most doubtful informal proofs

What are the proofs where we do in practice worry about
correctness?

• Those that are just very long and involved. Classification of finite
simple groups, Seymour-Robertson graph minor theorem

• Those that involve extensive computer checking that cannot in
practice be verified by hand. Four-colour theorem, Hales’s proof
of the Kepler conjecture

• Those that are about very technical areas where complete rigour
is painful. Some branches of proof theory, formal verification of
hardware or software

16

4-colour Theorem

Early history indicates fallibility of the traditional social process:

• Proof claimed by Kempe in 1879

• Flaw only point out in print by Heaywood in 1890

Later proof by Appel and Haken was apparently correct, but gave
rise to a new worry:

• How to assess the correctness of a proof where many explicit
configurations are checked by a computer program?

Most worries finally dispelled by Gonthier’s formal proof in Coq.

17

Formal verification

In most software and hardware development, we lack even informal
proofs of correctness.

Correctness of hardware, software, protocols etc. is routinely
“established” by testing.

However, exhaustive testing is impossible and subtle bugs often
escape detection until it’s too late.

The consequences of bugs in the wild can be serious, even deadly.

Formal verification (proving correctness) seems the most satisfactory
solution, but gives rise to large, ugly proofs.

18

The FDIV bug

A great stimulus to formal verification at Intel:

• Error in the floating-point division (FDIV) instruction on some
early IntelPentium processors in 1994

• Very rarely encountered, but was hit by a mathematician doing
research in number theory.

• Intel eventually set aside US $475 million to cover the costs of
replacements.

We don’t want something like that to happen again!

19

Who checks the checker?

Why should we believe that a formally checked proof is more reliable
than a hand proof or one supported by ad-hoc programs?

• What if the underlying logic is inconsistent? Many notable
logicians (Frege, Curry, Martin-Löf, . . .) have proposed systems
that turned out to be inconsistent.

• What if the inference rules of the logic are specified incorrectly?
It’s easy and common to make mistakes connected with variable
capture.

• What if the proof checker has a bug? They are often large and
complex pieces of software not developed to high standards of
rigour

20

Who cares?

The robust view:

• Bugs in theorem provers do happen, but are unlikely to produce
apparent “proofs” of real results.

• Even the flakiest theorem provers are far more reliable than most
human hand proofs.

• Problems in specification and modelling are more likely.

• Nothing is ever 100% certain, and a foundational death spiral
adds little value.

21

We may care

The hawkish view:

• There has been at least one false “proof” of a real result.

• It’s unsatisfactory that we urge formality on others while
developing provers so casually.

• It should be beyond reasonable doubt that we do or don’t have a
formal proof.

• A quest for perfection is worthy, even if the goal is unattainable.

22

Prover architecture

The reliability of a theorem prover increases dramatically if its
correctness depends only on a small amount of code.

• de Bruijn approach — generate proofs that can be certified by a
simple, separate checker.

• LCF approach — reduce all rules to sequences of primitive
inferences implemented by a small logical kernel.

The checker or kernel can be much simpler than the prover as a
whole.

Nothing is ever certain, but we can potentially achieve very high
levels of reliability in this way.

23

HOL Light

HOL Light is an extreme case of the LCF approach. The entire
critical core is 430 lines of code:

• 10 rather simple primitive inference rules

• 2 conservative definitional extension principles

• 3 mathematical axioms (infinity, extensionality, choice)

Arguably, HOL Light is the computer-age version of Principia:

• The logical basis is simple type theory, which was distilled
(Ramsey, Chwistek, Church) from PM’s original logic.

• Everything, even arithmetic on numbers, is done from first
principles by reduction to the primitive logical basis.

24

Automation versus interaction

Most theorem provers can be classified somewhere between two
extremes:

• Automatic — User states a conjecture, and the system tries to
prove it without further user intervention (e.g. Otter).

• Interactive — User gives an explicit step-by-step proof and the
system merely checks its correctness (e.g. AUTOMATH).

Best seems a combination where the user specifies the overall
sketch of the proof and the machine fills in the gaps automatically.

25

Choice of foundations

What kind of logic?

• Classical — easier and more familiar

• Constructive — natural link with computation

• Partial functions — perhaps more intuitive

What kind of mathematical framework?

• Untyped set theory

• Simple type theory

• Rich dependent type theory

26

Prover architecture

How to organize the construction of the prover?

• Arbitrary programming (but then how do you make it sound?)

• Based on fixed primitive inferences (the LCF approach, but you
need to work hard to implement some derived rules)

• Extensible by reflection principles (prove new inference rules
correct then add them to the system, which is a nice idea but
very hard work)

27

Proof style

Directly invoking the primitive or derived rules tends to give proofs
that are procedural. This can be quite compact and efficient.

But in some ways a declarative style (what is to be proved, not how)
is more attractive: easier to understand independent of the prover.

Mizar pioneered the declarative style of proof, and it is now being
adopted in some other systems.

There is still no consensus on what is best. Perhaps we need to be
able to combine both?

28

A few notable general-purpose theorem provers

Different systems with various strengths and weaknesses:

• ACL2

• Coq

• HOL (HOL Light, HOL4, ProofPower, HOL Zero)

• IMPS

• Isabelle

• Mizar

• Nuprl

• PVS

29

Recent formal proofs in pure mathematics

Three notable recent formal proofs in pure mathematics:

• Prime Number Theorem — Jeremy Avigad et al (Isabelle/HOL),
John Harrison (HOL Light)

• Jordan Curve Theorem — Tom Hales (HOL Light), Andrzej
Trybulec et al. (Mizar)

• Four-colour theorem — Georges Gonthier (Coq)

These indicate that highly non-trivial results are within reach.
However these all required months/years of work.

30

Recent formal proofs in computer system verification

Some successes for verification using theorem proving technology:

• Microcode algorithms for floating-point division, square root and
several transcendental functions on Intel Itanium processor
family (John Harrison, HOL Light)

• CompCert verified compiler from significant subset of the C
programming language into PowerPC assembler (Xavier Leroy et
al., Coq)

• Designed-for-verification version of L4 operating system
microkernel (Gerwin Klein et al., Isabelle/HOL).

Again, these indicate that complex and subtle computer systems can
be verified, but significant manual effort was needed, perhaps tens of
person-years for L4.

31

Some challenges and open problems

Such successes are notable, but also indicate some challenges:

• Improving level of automation so that users don’t have to spend
too much of their time working on essentially ‘trivial’ or ‘obvious’
lemmas.

• Incorporating results from computer calculations or symbolic
computations into formal proofs in a sound but efficient way.

• Formalizing highly intuitive reasoning that is difficult to represent
straightforwardly in logical deductions.

32

The Kepler conjecture

The Kepler conjecture states that no arrangement of identical balls in
ordinary 3-dimensional space has a higher packing density than the
obvious ‘cannonball’ arrangement.

Hales, working with Ferguson, arrived at a proof in 1998:

• 300 pages of mathematics: geometry, measure, graph theory
and related combinatorics, . . .

• 40,000 lines of supporting computer code: graph enumeration,
nonlinear optimization and linear programming.

Hales submitted his proof to Annals of Mathematics . . .

33

The response of the reviewers

After a full four years of deliberation, the reviewers returned:

“The news from the referees is bad, from my perspective.
They have not been able to certify the correctness of the
proof, and will not be able to certify it in the future, because
they have run out of energy to devote to the problem. This is
not what I had hoped for.

Fejes Toth thinks that this situation will occur more and more
often in mathematics. He says it is similar to the situation in
experimental science — other scientists acting as referees
can’t certify the correctness of an experiment, they can only
subject the paper to consistency checks. He thinks that the
mathematical community will have to get used to this state of
affairs.”

34

The birth of Flyspeck

Hales’s proof was eventually published, and no significant error has
been found in it. Nevertheless, the verdict is disappointingly lacking
in clarity and finality.

As a result of this experience, the journal changed its editorial policy
on computer proof so that it will no longer even try to check the
correctness of computer code.

Dissatisfied with this state of affairs, Hales initiated a project called
Flyspeck to completely formalize the proof.

35

Flyspeck

Flyspeck = ‘Formal Proof of the Kepler Conjecture’.

“In truth, my motivations for the project are far more complex
than a simple hope of removing residual doubt from the
minds of few referees. Indeed, I see formal methods as
fundamental to the long-term growth of mathematics. (Hales,
The Kepler Conjecture)

The formalization effort has been running for a few years now with a
significant group of people involved, some doing their PhD on
Flyspeck-related formalization.

In parallel, Hales has simplified the informal proof using ideas from
Marchal, significantly cutting down on the formalization work.

36

Flyspeck: current status

• Almost all the ordinary mathematics has been formalized in HOL
Light: Euclidean geometry, measure theory, hypermaps, fans,
results on packings.

• Many of the linear programs have been verified in Isabelle/HOL
by Steven Obua. Alexey Solovyev has recently developed a
faster HOL Light formalization.

• The graph enumeration process has been verified (and improved
in the process) by Tobias Nipkow in Isabelle/HOL

• An approach to formalizing the nonlinear programming based on
Bernstein polynomials has been developed by Roland Zumkeller,
initially using Coq.

A challenge is final integration of results in multiple systems . . .

37

Conclusions

• Formalization of mathematics is feasible with modern computer
technology and sofware.

• Useful in formal verification and arguably in pure mathematics
too.

• Still many provers and many different design choices without
clear consensus.

• The Flyspeck project is perhaps the most ambitious current
formalization project

38

